Lab 2 - Correlation and Purity Semantic Relatedness and Concept Categorization

Alberto Testoni, 12nd November 2020

- Human subjects are asked to **rate** the degree of semantic similarity between two words on a numerical scale.
- The performance of a computational model is assessed in terms of **correlation** between the average scores that subjects assigned to the pairs and the cosine between the corresponding word embeddings.

Word pair	Relatedness assigned by human annotators (0-4 scale)	Word embeddings in Word2Vec	Cosine similarity between word embeddings
automobile-car	3.92	car automobile	≈ 0.8-0.9

Word pair	Relatedness assigned by human annotators (0-4 scale)	Word embeddings in Word2Vec	Cosine similarity between word embeddings
automobile-car	3.92	car automobile	≈ 0.8-0.9
forest-television	1.2	forest	≈ 0.1-0.2

Word pair	Relatedness assigned by human annotators (0-4 scale)	Word embeddings in Word2Vec	Cosine similarity between word embeddings
automobile-car	3.92	car automobile	≈ 0.8-0.9
forest-television	1.2	forest	≈ 0.1-0.2

Word pair	Relatedness assigned by human annotators (0-4 scale)	Word embeddings in Word2Vec	Cosine similarity between word embeddings
automobile-car	3.92	car automobile	≈ 0.8-0.9
forest-television	1.2	forest → television	≈ 0.1-0.2

What we need:

- A dataset of word pairs with corresponding human relatedness scores
- A matrix of word embeddings
- A "dictionary" that maps each word to a row in the matrix, and vice versa
- A statistical measure of correlation

Matrix of word embeddings & mapping dictionaries

(sp)							
vord	0.1	-0.3	0.2		0.1	0.6	0.8
> #) e	0.2	0.4	0.1		0.2	0.5	0.3
y size							
ibular	-0.5	-0.8	0.4		-0.8	0.4	0.5
Voca	0.8	0.3	0.2		0.1	0.4	-0.9

n-dimensional word embeddings

word2idx	idx2word
dog: 0	0 : dog
city : 1	1 : city
friend : 3999	3999 : friend
Paris : 4000	4000 : Paris

Semantic Relatedness Datasets

Two datasets:

- 1. Rubenstein and Goodenough (1965): the *rg* dataset consists of 65 noun pairs. Performance evaluated using **Pearson** correlation.
- 2. Bruni et al. (2013): The *MEN* dataset comprises 1000 word pairs. Performance evaluated with **Spearman** correlation.

Pseudocode

Load a <u>matrix of word embeddings</u>, and two mapping dictionaries <u>word2idx and idx2word</u> Load two empty lists: <u>human_relatedness</u> and <u>word2vec_relatedness</u> Open the <u>dataset</u> file

Repeat for each <u>line in the dataset file</u>:

Save <u>word1</u>, <u>word2</u>, and the <u>relatedness score</u> assigned to this pair by human annotators Append the <u>relatedness score</u> score to <u>human_relatedness</u> list Get the <u>word embeddings</u> of <u>word1</u> and <u>word2</u> from the matrix <u>Compute the cosine similarity</u> between the two word embeddings Append this cosine similarity to the <u>word2vec_relatedness</u> list

Compute the Pearson/Spearman correlation between <u>human_relatedness</u> and <u>word2vec_relatedness</u>

Let's Look at the Code!

https://colab.research.google.com/drive/1RPY23jC3QXymflZy4ihOSdvOLzJKAJ0F?usp=sharing

Concept Categorization - The Task

- Given a set of nominal concepts, the task is to **group** them into natural categories (e.g., *helicopters* and *motorcycles* should go to the *vehicle* class, *dogs* and *elephants* into the *animal* class).
- The performance of a computational model is assessed in terms of **purity**, a measure of the extent to which each cluster (group) contains concepts from a single category.

Concept Categorization - The Dataset

ANIMALS VEGETABLES		TOOLS
dog	onion	knife
cat	polato	telephone
duck	pumpkin	spoon

Concept Categorization - Word Embeddings

Concept Categorization - Clustering

Contingency matrix

	Cluster 1	Cluster 2	Cluster 3
animals			
vegetables			
tools			

Contingency matrix

	Cluster 1	Cluster 2	Cluster 3
animals	3		
vegetables	1		
tools	0		

Cluster 1 Cluster 2 dog potato onion cat pumpkin , knife duck telephone spoon Cluster 3

	Cluster 1	Cluster 2	Cluster 3
animals	3	0	
vegetables	1	2	
tools	0	0	

Contingency matrix

Cluster 1 Cluster 2 dog potato onion cat pumpkin , knife duck telephone spoon Cluster 3

	Cluster 1	Cluster 2	Cluster 3
animals	3	0	0
vegetables	1	2	0
tools	0	0	3

Contingency matrix

Contingency matrix

Cluster 3

0

0

3

max: 3

Cluster 2

0

2

0

max: 2

Contingency matrix

Contingency matrix

22

Concept Categorization

What we need:

- A dataset of words paired with their category (ESSLLI 2008 dataset: 44 words belonging to 6 categories)
- A matrix of word embeddings
- A "dictionary" that maps each word to a row in the matrix, and vice versa
- A clustering algorithm (K-Means) more in ML for NLP course
- A metric to evaluate the cluster quality (purity)

Pseudocode

Load a <u>matrix of word embeddings</u>, and two mapping dictionaries <u>word2idx and idx2word</u> Load an empty matrix where you will save the word emb. of each word in the dataset: <u>test_word_embeddings</u> Load an empty list: <u>gold_standard_labels</u> Open the <u>dataset file</u>

Repeat for each <u>line in the dataset file:</u>

Save the input <u>word</u> and its <u>semantic_category</u> Append the semantic category to <u>gold_standard_labels</u> list Get the <u>embedding of word from</u> the matrix Save this word embedding in the <u>test_word_embeddings</u> matrix

Run the <u>clustering algorithm</u> over the test_word_embeddings Compute the <u>purity of the clusters with respect to the gold_standard_labels</u>

Let's Look at the Code!

https://colab.research.google.com/drive/1RPY23jC3QXymflZy4ihOSdvOLzJKAJ0F?usp=sharing